Technical Data Sheet

Innate Immuno-Oncology Protein Panel

Product Information

Material Number:572615Size:2 TestsVol. per Test:NA

Reactivity: Tested in Development: Human

Storage Buffer:

Component: 51-9025300

Description: APC/Myeloid-Cell Protein Panel

 Size:
 1 Test (2 ea)

 Vol. per Test:
 NA

Component: 51-9025299

Description: NK-Cell Protein Panel

Size: 1 Test (2 ea)

Vol. per Test: NA

 Component:
 51-9025129

 Description:
 Tumor Protein Panel

 Size:
 1 Test (2 ea)

Description

The BD® OMICS-One Innate Immuno-Oncology Protein Panel consists of 6 single tubes, 2 tubes of Tumor Protein Panel (1 test/tube) containing 30 different specificities against major Tumor markers, 2 tubes of NK-Cell Protein Panel (1 test/tube) containing 30 different specificities against major NK-Cell markers, and 2 tubes of APC/Myeloid-Cell Protein Panel (1 test/tube) containing 30 different specificities against major APC/Myeloid-Cell markers. Designed and optimized to work on the BD RhapsodyTM System, the Innate Immuno-Oncology Protein Panel is tested to work seamlessly alongside the BD RhapsodyTM Whole Transcriptome Analysis (WTA) Assay, Targeted mRNA Assay, BD® Single-Cell Multiplexing Kit (SMK), BD® Intracellular CITE-seq (IC-AbSeq) Assay, and BD RhapsodyTM TCR/BCR Next Multiomic Assay for human. The individual antibodies were each conjugated to an oligonucleotide that contains a specific antibody barcode sequence flanked by a polyA tail on the 3' end and a common PCR handle (PCR primer binding site) on the 5' end. All AbSeq barcode sequences were generated in-silico with minimal sequence similarity to the human genomes, have low predicted secondary structure, and have high Hamming distance within the BD antibody-oligo portfolio, to allow for sequencing error correction and unique mapping. The polyA tail of the oligonucleotide allows the barcode sequence to be captured by BD RhapsodyTM Enhanced Cell Capture Beads. The 5' PCR handle allows for efficient library generation for various sequencing platforms. Each individual antibody exists at an optimal concentration within the 84-plex panel to enable superior target and population resolution.

The Innate Immuno-Oncology Protein Panel is designed with SMART technology. SMART technology helps lower sequencing cost while increasing data resolution by attenuating antibodies that target high-expressing primary markers and allowing reallocation of sequencing reads to markers expressed at lower levels. With SMART technology, markers low in expression can be quantified without having to do deeper sequencing and incurring high sequencing cost. There are six specificities attenuated in the Innate Immuno-Oncology Protein Panel, CD2 and CD31, CD44, CD45, HLA-DR, and HLA-ABC.

Preparation and Storage

Store at 2-8°C and protected from prolonged exposure to light.

Do not freeze.

Application Notes

Application

Single Cell 3' Sequencing Qualified

Recommended Assay Procedure:

BD Biosciences

bdbiosciences.com

United States Canada Europe Japan Asia Pacific Latin America/Caribbean 877.232.8995 866.979.9408 32.2.400.98.95 0120.8555.90 65.6861.0633 55.11.5185.9995

For country contact information, visit ${\bf bdbiosciences.com/contact}$

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton, Dickinson and Company is stictly prohibited.

For Research Use Only, Not for use in diagnostic or therapeutic procedures. Not for resale.

© 2017 BD. BD, the BD Logo and all other trademarks are property of Becton, Dickinson and Company.

572615 Rev.

Page 1 of 6

This reagent is provided lyophilized in a pre-titrated format. Each test can stain up to 2 million cells.

- Remove one tube of BD® OMICS-One Tumor Protein Panel, one tube of BD® OMICS-One NK-Cell Protein Panel and one tube of BD® OMICS-One APC/Myeloid-Cell Protein Panel from foil bags and bring up to room temperature for 5 minutes.
- 2. Make sure all pellets are located at the bottom of the tubes. If not, briefly centrifuge to collect the contents at the tube bottom.
- For each tube, add 35 µL of nuclease-free water to the bottom of the tube and allow antibodies to reconstitute for 5 minutes at room temperature.
- 4. Place the reconstituted antibodies on ice until the cells are ready for staining.
 - Note: Reconstitute antibody **immediately** before cell staining. Prolonged incubation of reconstituted antibody may increase the non-specific background.
- For BD® AbSeq Ab-Oligo drop-in of 25 plex or lower, prepare the BD® AbSeq labeling MasterMix in 1.5-mL LoBind tube on ice.
 Note: For drop-in with more than 25 plex, reach out to technical support for calculation.

If sequential labeling with Sample Tags or no Sample Tags, prepare BD® AbSeq labeling MasterMix for drop-ins as follows:

Component	1 sample (μL)	1 sample + 30% overage (μL)	2 samples + 30% overage (µL)
Per BD® AbSeq Ab-Oligo	2.0	2.6	5.2
Total of BD® AbSeq Ab-Oligo	2.0 × N*	2.6 × N	5.2 × N
FBS† (catalog number 554656)	70 - (2.0 x N)	91 - (2.6 x N)	182 - (5.2 x N)
<u>Total</u>	70	91	182

If co-labeling with Sample Tags, prepare BD® AbSeq labeling MasterMix for drop-ins as specified as follows:

Component	1 sample (μL)	1 sample + 30% overage (μL)	2 samples + 30% overage (μL)
Per BD® AbSeq Ab-Oligo	2.0	2.6	5.2
Total of BD® AbSeq Ab-Oligo	2.0 × N*	2.6 × N	5.2 × N
FBS† (catalog number 554656)	$50 - (2.0 \times N)$	$65 - (2.6 \times N)$	$130 - (5.2 \times N)$
<u>Total</u>	50	65	130

^{*} N = number of drop-in antibodies. N = 0 if there are no drop-in antibodies.

- 6. Pipet-mix the BD® AbSeq labeling MasterMix for drop-ins. Briefly centrifuge to collect the contents at the bottom, and place back on ice.
- 7. For sequential labeling with Sample Tags or no Sample Tags, for each sample, combine the three tubes containing 35 μL reconstituted NK-Cell Protein Panel solution, 35 μL reconstituted APC/Myeloid-Cell Protein Panel solution, and 35 μL reconstituted Tumor Protein Panel solution. Then add 70 μL BD® AbSeq labeling MasterMix of drop-ins to the tube containing 105 μL reconstituted Tumor, NK-Cell and APC/Myeloid-Cell Protein Panels solution to make a total volume of 175 μL.

For co-labeling with Sample Tags, for each sample, combine the three tubes containing 35 μ L reconstituted NK-Cell Protein Panel solution, 35 μ L reconstituted APC/Myeloid-Cell Protein Panel solution, and 35 μ L reconstituted Tumor Protein Panel solution. Then add 50 μ L BD® AbSeq labeling MasterMix of drop-ins and 20 μ L Sample Tag to the tube containing total 105 μ L Tumor, NK-Cell and APC/Myeloid-Cell Protein Panels solution to make a total volume of 175 μ L.

- 8. Pipet-mix the mixture, briefly centrifuge to collect the contents at the tube bottom, and place back on ice.
- 9. Centrifuge cells at 400 × g for 5 minutes. If Fc Block is used, proceed to step 10. If Fc Block is not used, skip to step 11.
- (Optional) For samples containing myeloid and B lymphocytes, BD Biosciences recommends blocking nonspecific Fc Receptor-mediated false-positive signals with Human BD Fc Block (catalog number 564220).
 - a. To perform blocking, pipet the Fc Block MasterMix into a new 1.5-mL LoBind tube on ice:

Component	1 sample (μL)*	1 sample + 20% overage (μL)
FBS† (catalog number 554656)	20.0	24.0
Fc Block‡ (catalog number 564220)	5.0	6.0
Total	25.0	30.0

^{*} Sufficient for up to 1 million cells. To block more cells, adjust the volume.

572615 Rev. Page 2 of 6

[†] FBS = BD Pharmingen™ Stain Buffer.

[†] FBS = BD PharmingenTM Stain Buffer.

[‡] Fc Block = BD Pharmingen™ Human BD Fc Block.

- b. Pipet-mix the Fc Block MasterMix and briefly centrifuge. Place on ice.
- c. Remove the supernatant from the cells without disturbing the pellet.
- d. Resuspend the cells in 25 μL of Fc Block MasterMix.
- e. Incubate the cells at room temperature (15°C to 25°C) for 10 minutes.
- f. Add 175 μL of BD® AbSeq labeling MasterMix from Step 8 into the cell suspension. Pipet-mix and proceed to Step 12.
- 11. Remove the supernatant from the cells without disturbing the pellet. Add 25 μL Stain Buffer (FBS) to the 175 μL of BD® AbSeq labeling MasterMix from Step 8 to make a total volume of 200 μL. Resuspend the cell pellet in 200 μL total volume. Pipet-mix.
- 12. Transfer the cells with BD® AbSeq labeling MasterMix into a new 5-mL polystyrene Falcon tube.
- 13. Stain the cells on ice for 30 minutes.
- 14. Add 3-4 mL Stain Buffer (FBS) to labelled cells and pipet-mix.
- 15. Centrifuge at 400 × g for 5 minutes.
- 16. Uncap the tube and invert to decant supernatant into biohazardous waste. Keep the tube inverted and gently blot on a lint-free wiper to remove residual supernatant from tube rim.
- 17. Repeat steps 14–16 twice more for a total of three washes.
- 18. Resuspend the final washed cell pellet in 620 µL cold Sample Buffer from the BD Rhapsody™ Enhanced Cartridge Reagent V3 (catalog number 667052) and proceed to single cell capture with on-cartridge washing described in substeps a–c. Refer to the BD Rhapsody™ HT Single-Cell Analysis System Single-Cell Capture and cDNA Synthesis Protocol (Doc ID 23-24252) or BD Rhapsody™ HT Xpress System Single-Cell Capture and cDNA Synthesis Protocol (Doc ID 23-24253) for additional details.

Note: Perform on-cartridge washing after cell settling (8-minute incubation) as described in the following sub-steps.

- a. At the protocol section of "Loading cells in BD RhapsodyTM 8-Lane Cartridge", after cell load, incubate the cartridge in the dark at room temperature for 8 minutes.
- b. Place the cartridge on the BD Rhapsody™ HT Xpress and perform the On-Cartridge Wash steps as follows:

Material to load	Volume (μL) 1 lane	Pipette Mode
Air	380	Prime/Wash
Cold Sample Buffer	380	Prime/Wash
Air	380	Prime/Wash
Cold Sample Buffer	380	Prime/Wash

c. (Optional) Perform the scanner step: Cell Load Scan, if using BD Rhapsody™HT Single-Cell Analysis System Single-Cell Capture and cDNA Synthesis Protocol (Doc ID 23-24252). No need for 8-minute delay before scanning.

Warning: All biological specimens and materials are considered biohazardous. Handle as if capable of transmitting infection and dispose using proper precautions in accordance with federal, state, and local regulations. Never pipette by mouth. Wear suitable protective clothing, eyewear, and gloves.

List of all 30 Human AbSeq specificities included in the BD® OMICS-One Tumor panel:

Specificity	Clone	Oligo ID	BD® AbSeq Barcode Sequence
CD274 (PD-L1)†	MIH1	AHS0004	ATCGTAAGGCTCGTGGTTCGTAAGTAAGTTCGTATC
CD279 (PD-1)	EH12.1	AHS0014	ATGGTAGTATCACGACGTAGTAGGGTAATTGGCAGT
CD45†	HI30	AHS0040	GTGCGAAATGGCGGAATGTTATCTGCGAATGTAGTC
CD324 (E-cad)	67A4	AHS0041	GATATGAATGGGTTGCGGTGTAAAGTCGTAATGGTT
CD24	ML5	AHS0042	ACTTTGGGTTGAGCGCATGATTATTCGTGACACTTT
CD90	5E10	AHS0045	GACTATATGTACGGTGTTAATTCGGGATCCTGCGCT
CD34	581	AHS0061	TGGGTGTATTACGGTTAGTTTATGCGCGAAGGTGTT
CD117	YB5.B8	AHS0064	GGATTAGTTGTCGTTATAGGGAGTGCGTTCTTAGCG
HLA-A,B,C	G46-2.6	AHS0066	GATATGCATGGCGAGTAGGTAGAACGAAGCTTAGGT
CD54*	HA58	AHS0076	AAGAGAATATATGCGTGCGTTGTTAAGGGAATGCGT
CD29	MAR4	AHS0080	TGGTAAGGTGGTTGCGAGTAAGTAGCGGTGAGTTGT
CD47	B6H12	AHS0087	TGTTAGGTTCGACGTATTATGTGTAGATCCGCAAGG
CD326 (EpCam)	EBA-1	AHS0089	TTGAGCGTAAAGTTGCGTCCGGTAATTGAGTTGCGT
CD66	B1.1/CD66	AHS0094	GTCTGCGCAAGGTAAGCTAAGTAACGAAAGGGATCT
CD133	W6B3C1	AHS0103	TTTGGTATTGGCACGGTTTGTAGCGAGTTGACGGTC
CD26	M-A261	AHS0109	TGTAGGTTGCGCGGTTATTAGGGTATTATCGATCTG
CD155	TX24	AHS0111	GCGGTGGATCGATGGGTATAGTTGGTAATTTGCGTC
CD146	P1H12	AHS0127	AGGTTATTTAGGTGACGGTTGTATTGACGAGAGAGG
C-MET	3D6	AHS0132	AGCGTGAGTTGTCGGTAGTTAATTATCGGAGAGTTT
ITGRN BTA 7	FIB504	AHS0158	TTTCAGTTTGGTCGCAGTTAAGGTATCGTATGGGTC
CD44	L178	AHS0167	GTGATTGATTAGGACAGTTCGTTGCTTAGTAGTGGG

572615 Rev. Page 3 of 6

CD31 (PECAM1)*	WM59	AHS0170	CTAAGGGACGTAATTGAGTTTCGGTGATCGCAGTTT
EphB2	2H9	AHS0176	TATTGCGGGTAGGATTTGTCTCGAAGCGTAGGTAGC
Vista [†]	MIH65.RMAB	AHS0187	ATCAGGGAATCTCGGTAAGTTAAACGTGTATAGTGC
PDPLN	LPMAB-17	AHS0192	TTTATGAGTATTACGTCTGTTGCGATTGTTGGCGGT
NOTCH1	MHN1-519	AHS0214	CGTAGTAGGAGCGTGTTTCATCGGCATTATCGTTTG
CD325 (n-Cad)	8C11	AHS0223	TAGGATGAGTTTCGTAAGTAAGGTAGTCGTATGGCT
CD58	1C3	AHS0237	TTGGTGAGTATTGGTGCGTAGTATGCGGGATGTTTG
EGFR	EGFR.1	AHS0241	ATATGATTGATGCGGGTTAGCCTACAGATTCGAGTT
CD227 (MUC1)	HMFG2	AHS0247	AGTGCATGGTTAGTAGGTGTGAGTCGTTAGATATTC

List of all 30 Human AbSeq specificities included in the BD® OMICS-One NK-Cell panel:

<u>Specificity</u>	Clone	Oligo ID	BD® AbSeq Barcode Sequence
CD11b‡	M1/70	AHS0005	ATCGTTATTCGTTGTAGTTCGCCCGGTTTGAGTAGT
CD56	NCAM16.2	AHS0019	AGAGGTTGAGTCGTAATAATAATCGGAAGGCGTTGG
CD38	HIT2	AHS0022	GTCAACGATGGGTAGCGGTAGAAATAACGGAACTGG
CD27	M-271	AHS0025	TGTCCGGTTTAGCGAATTGGGTTGAGTCACGTAGGT
CD2	RPA-2.10	AHS0029	AAACGTAGATTAGAGCCGGGTATGTCGCAACTGATT
CD16‡	3G8	AHS0053	TAAATCTAATCGCGGTAACATAACGGTGGGTAAGGT
CD184 (CXCR4)	12G5	AHS0060	CAGTGTTTAGAGCGGGTTGCATATGTCGTTTAGAGG
CD49d	9F10	AHS0063	TAGGGTGACTTAGCGATTGATGCGTATGTTTGGGCG
CD314 (NKG2D)	1D11	AHS0065	TTGAAATGCGATGAGACGTAGAGCGATGTAGGTAGC
CD335 (NKP46)	9E2/NKP46	AHS0068	CAATTTGTTCGCGTTTAGTAGTCGTCGTCTTATGGG
CD54*	HA58	AHS0076	AAGAGAATATATGCGTGCGTTGTTAAGGGAATGCGT
CD226	DX11	AHS0079	GAGTTTATGATTCGTTTCTTCGGTAGTTCGTCGCTT
CD94	HP-3D9	AHS0085	GAGGTTAGGATAGGTGTACGGGTCGAGTTGAATTCT
CD336 (NKP44)	p44-8	AHS0090	AATGCAAACGATATCACGAAGGGTAGTACACGACGG
CD49a	SR84	AHS0101	ATGACACGAATGCGACGAGAGGCGAAATAGGTTGGT
CX3CR1	2A9-1	AHS0125	GGGTTCACGAGGTTTAAAGCGGTAGTATAGGATGCC
CD122	Mik-β3	AHS0146	TTAAAGAGATTCGTGGGTATTGGCGCAGTCATTCCT
CD140b (PDGFR)	28D4	AHS0151	GACAACATTTAGGACGTGACGAGAGAGTATAGCTTC
CD248	B1/35	AHS0156	ATCACTTATTTCGTTTGGAGGGTTCGTAGGCGTTGC
CD63	H5C6	AHS0157	TGCAGCGTTAGGACCAAGCGTTTACCGTAGAATATT
CD140a	α-R1	AHS0160	TTACTGACTTTCGGACGTTGGTTACTTAGGGTTATG
CD31 (PECAM1)*	WM59	AHS0170	CTAAGGGACGTAATTGAGTTTCGGTGATCGCAGTTT
CD96	6F9	AHS0194	CTAATGTAAGAGCGGACGTTTGGGCACTATATGTTT
CD161 (KLRB1)	HP-3G10	AHS0205	TTTAGGACGATTAGTTGTGCGGCATAGGAGGTGTTC
CD158b (KIR)	DX27	AHS0209	CGTAGGAGGATTTCGTCGATGGGTTTGTTAGCGTTC
CD158e1	DX9	AHS0211	AGGTTCATTGCGGCATTAGGCGTCATATAGTAGGTG
CD337/NKp30	P30-15	AHS0213	GGTAACTGACATGACGGAGCGATAATTTCTGGCGGT
CD3	UCHT1	AHS0231	AGCTAGGTGTTATCGGCAAGTTGTACGGTGAAGTCG
CD329 (Siglec-9)) E10-286	AHS0239	CGGGCGCGAAGATAGGATAATAGGTAACGTCAAATG
CD106	51-10C9	AHS0251	TCTGATTTAGCGGGTGGACGTATTATAGTGATTGGC

572615 Rev. Page 4 of 6

List of all 30 Human AbSeq specificities included in the BD® OMICS-One APC/Myeloid-Cell panel:

Specificity	Clone	Oligo ID	BD® AbSeq Barcode Sequence
CD103	BER-ACT8	AHS0001	AAATAGTATCGAGCGTAGTTAAGTTGCGTAGCCGTT
CD274 (PD-L1)†	MIH1	AHS0004	ATCGTAAGGCTCGTGGTTCGTAAGTAAGTTCGTATC
CD11b‡	M1/70	AHS0005	ATCGTTATTCGTTGTAGTTCGCCCGGTTTGAGTAGT
CD123	7G3	AHS0020	ACAGTTTAGTAGGACGTGAGGTATCGCGAGAATGCC
HLA-DR	G46-6	AHS0035	TGTTGGTTATTCGTTAGTGCATCCGTTTGGGCGTGG
CD14	MPHIP9	AHS0037	TGGCCCGTGGTAGCGCAATGTGAGATCGTAATAAGT
CD45†	HI30	AHS0040	GTGCGAAATGGCGGAATGTTATCTGCGAATGTAGTC
CD33	WM53	AHS0044	GTGTTAGTGATTTGATAGGACGCGTTACGAGAGATT
CD80	L307.4	AHS0046	GAGGGTAACGGGTGTCCAAATATCGGCTGTGTAAGT
CD16‡	3G8	AHS0053	TAAATCTAATCGCGGTAACATAACGGTGGGTAAGGT
CD64	10.1	AHS0055	TTGTGCGGCGTAGTATGGTTATCTCGAGTGAAAGTC
CD11c	B-LY6	AHS0056	ATGCGTTGCGAGAGATATGCGTAGGTTGCTGATTGG
CD163	GHI/61	AHS0062	TATTATGTGCGAACTATGGTATCCGTATTGAGGGCT
CD195 (CCR5)	2D7/CCR5	AHS0070	ATGGTTTAGTCGTACGTGGGTTTAGATTGGCGGTGC
CD206	19.2	AHS0072	GCTGGTTATCGTTTGAGAGTCGGTATGGAATGCGGT
CD32	FLI8.26	AHS0073	GGTTGTAGGTGCGGAATATAAGCGTCGTTGAGGTGT
CD273	MIH18	AHS0075	TGAGTAACCGTATGTAATCCGTAATCGTAGAAGCGC
CD141	1A4	AHS0083	TGGAAGTAAGTATGGGTCGGCGTAAATTGTGCGTGT
CD1c	F10/21A3	AHS0088	ATAGATTACATTCGTTTAGCGTTGGGTTCGGTCCGT
CD40	5C3	AHS0117	GGTGTAATTGGGCTAGAACGTATATGCGGTAAGGCG
FCeR1a	AER-37	AHS0129	GATATGGCGTGATGGTAGGTTCGGTTTAAGTTAGCG
CD169	7-239	AHS0133	CATTAAGCACGAAGGGTATAGGTAGGAACGGTTGGC
CD36	IVC7	AHS0135	AATTGTAGTAGTCCGGTGTATGTAGAGTAGGCGTTT
CD115 (CSF1R)	9-4D2-1E4	AHS0136	CTGGTGGCGGCGAATTTGGTTACGACATATAGGGTT
CD162	KPL-1	AHS0139	CCAGATAGGCGATAGTGTTTAGGAGCGATTAGTGTG
CD85K	ZM3.8	AHS0179	AGTAGTCGTAGTTGGCGTGAATTGGGCTTATATCTG
VISTA†	MIH65.RMAB	AHS0187	ATCAGGGAATCTCGGTAAGTTAAACGTGTATAGTGC
CD15	W6D3	AHS0196	ATAGGCATGGACGACGTAGATAATAAGTGGCGGGTT
CD192 (CCR2)	LS132.1D9	AHS0208	CATGAGTGAGCGATATAGTGAGCGGTTTGTAGATT
CD116	Hgmcsfr1-M1	AHS0238	CTTAGTTGTAGGATCGAGAGTAGGTGTGCATTGCGT

^{*} Tumor and NK-Cell Protein Panels contain the same CD54 and CD31 (PECAM1) antibody.

572615 Rev. Page 5 of 6

[†] Tumor and APC/Myeloid-Cell Protein Panels contain the same CD274 (PD-L1), CD45 and VISTA antibody.

[‡] NK-Cell and APC/Myeloid-Cell Protein Panels contain the same CD11b and CD16 antibody.

Suggested Companion Products

Catalog Number	Name	Size	Clone	
554656	Stain Buffer (FBS)	500 mL	(none)	
564220	Human BD Fc Block™	0.25 mg	Fc1	
633801	Whole Transcriptome Analysis (WTA) Amplification Kit	1 Each	(none)	
633774	Targeted mRNA and AbSeq Amplification Kit	1 Each	(none)	
667058	TCR/BCR Next Amplification Kit	1 Each	(none)	
633773	cDNA Kit	1 Each	(none)	
666262	8-Lane Cartridge	1 Each	(none)	
667052	Enhanced Cartridge Reagent Kit V3	1 Each	(none)	
633781	Hu Single Cell Sample Multiplexing Kit	1 Each	(none)	
633849	Flex Single-Cell Multiplexing Kit A, Flex Sample Tag 1-6	1 Each	(none)	
633850	Flex Single-Cell Multiplexing Kit B, Flex Sample Tag 7-12	1 Each	(none)	
633851	Flex Single-Cell Multiplexing Kit C, Flex Sample Tag 13-18	1 Each	(none)	
633852	Flex Single-Cell Multiplexing Kit D, Flex Sample Tag 19-24	1 Each	(none)	
666625	BD® Rhapsody™ HT Xpress Package		(none)	
633701	BD Rhapsody Scanner		(none)	
570742	Intracellular AbSeq Buffer Kit	1 Each	(none)	
570911	OMICS-Guard Sample Preservation Buffer	50 mL	(none)	
570750	AbSeq Enhancer Kit	1 Each	(none)	
570751	RNase Inhibitor	1 Each	(none)	

Product Notices

- This reagent is provided lyophilized in a pre-titrated format. Go to https://www.bdbiosciences.com/en-us/resources/protocols/single-cell-multiomics for additional BD RhapsodyTM protocols.
- 2. The production process underwent stringent testing and validation to assure that it generates a high-quality conjugate with consistent performance and specific binding activity. However, verification testing has not been performed on all conjugate lots.
- 3. Go to https://abseq-ref-gen.genomics.bd.com/to access AbSeq reference files in FASTA format for bioinformatics analyses.
- 4. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing. Follow state and local guidelines when disposing of hazardous waste.
- 5. For U.S. patents that may apply, see bd.com/patents.
- 6. Read and understand the safety data sheets (SDSs) before handling chemicals. To obtain SDSs, go to regdocs.bd.com or contact BD Biosciences technical support at scomix@bd.com.

572615 Rev. Page 6 of 6