BD Rhapsody[™] Single-Cell Analysis System

A robust microwell-based single-cell partitioning system for high-dimensional biology research

A complete single-cell multiomics offering

BD Rhapsody[™] Systems – two configurations

BD Rhapsody™ Single-Cell Analysis System

- BD Rhapsody[™] Scanner and BD Rhapsody[™] Express System
- Visual workflow QC
- Recommended for users new to single-cell workflows, developing protocols, working with novel cell types or with complex cell systems
- Allows control over every experiment and the ability to troubleshoot and optimize single-cell capture without sequencing

BD Rhapsody™ Express Single-Cell Analysis System

- BD Rhapsody[™] Express System
- The same powerful single-cell partitioning system without visual workflow QC
- Recommended for experienced users working with well-established sample preparation methods and standard cell types

BD Rhapsody[™] System workflow

Does not use microfluidics

- Cells settle into microwells by gravity
- Volume of microwell array is \sim 600 µL, cell suspension loaded can be quite dilute
- Clogging of channels with cells is less of a concern

Requires minimal set of benchtop equipment

- Fluidic exchange in cartridge performed using automated pipettes on a mechanical station
- No fluidic pumps required

Unique benefits of the BD Rhapsody[™] System

Microwell-based single-cell partitioning

5

Microwell-based single-cell partitioning Trust the BD Rhapsody[™] System with your precious samples

Superior Cell Capture Rates

Low Multiplet Rates

Highest Cell Throughput per Flow Cell

Reliable, Consistent Results

Superior cell capture rate

Across 75 runs, ~75% of cells loaded onto cartridge are retrieved by sequencing

	Mean	Median	Overall variability (SD, all runs)	Intrasample variability (SD, replicate runs)
% of live cells loaded into cartridge recovered by sequencing	73.9%	75.2%	9.7%	3.4%

*number of cells seen in sequencing/live cells loaded to cartridge

- ~5000 Jurkat/Ramos cells (1:1 mix)
- Experiments performed on multiple days by multiple users
- Data taken from a total of 75 cartridge runs (~25 experiments, 2-5 replicate runs per experiment)
- Intrasample variability: ~ 3.4%
- Overall variability (including variability introduced by hemocytometer): ~ 9.7%

Cartridge capture rate for various cell types

			Live cells loaded to	Cartridge Capture
Cell type	Tissue	Sample prep	cartridge*	rate**
CAR-T cells	Blood	Cell in-house manufacturing	25,000	72%
Mesenchymal stem cells (MSC)	Fatty tissue	Frozen, ON grown and trypsinised cells	25,000	73%
Tumor xenograft	Head and neck cancer	Dissociated tumor on Mice (PDX - paw)	25,000	67%
Total CD4+ T cells	Blood	Magnetic isolation (negative selection of total CD4 T cells)	25,000	74%
CD45+ immune cells	Duodenal biopsies	FACS sorted	25,000	68%
FACS sorted NK and T cell subsets	Blood	FACS sorted	15,000	66%
MSC (cyropreserved)	Cell lines	Cryopreserved	11,443	80%
iPSC, Adipocyte (primary fresh), GABA Neurons (cell line), Hepatocytes (primary)	Primary cells/Cell lines	Live/Cryopreserved	22,885	60%
Myeloma cell lines	Cell lines	Flask grown	11,000	73%

*Based on hemocytometer cell counts

**Capture rate = # of wells with viable cells and a bead/live cells loaded to cartridge

of wells with viable cells and a bead is good estimation of the number of cells that could be

recovered in sequencing

Examining capture of cell types in the BD Rhapsody[™] System compared to flow cytometry

Bone marrow extracted

High correlation between cell types seen with the BD Rhapsody[™] System and those seen using flow cytometry

Faithful capture of cells with disparate size and morphology

BT546 (20 um)

*Neutrophils (granulocytes) isolated using negative magnetic enrichment

11

High cell capture and low multiplet rate across cell inputs

Very good correlation of theoretical multiplet rate (poisson distribution) and scanner values ~8-10% multiplets @40,000 cells/cartridge

Reproducible data with minimal cell-cell crosstalk from high cell inputs

Displaying 3,000 cells from a 40,000 cell load (1:1 mixture of human and mouse cell lines; shallow sequencing)

Multiplet Rate (n=3)

Human (Jurkat) Mouse (A20) Multiplet (inter- and intra-species)

Superloading enables significant cost savings

Load 40,000 cells

~8% multiplet rate @ 40,000 cell load >220,000 partitions per flow cell

PlatformAssaySample InputBD Rhapsody™ Cartridge + Reagents CostBD Rhapsody™
SystemTargeted
+ A0,000 cells per cartridgew/ SMK:
+ \$1,624
(\$0.04/cell)w/o SMK:
+ \$1,520
(\$0.04/cell)

Go beyond PBMCs with the BD Rhapsody[™] System

 Increasing recognition in the Immunology field about the importance of granulocytes in immune response

https://youtu.be/i7UIYdyFJvQ

- Microwell-based systems
 - Gold standard for fragile cells such as granulocytes
 - Reliable
 - Much less batch effects allowing easier integration of datasets

Severe COVID-19 is marked by a dysregulated myeloid cell compartment

https://doi.org/10.1016/j.cell.2020.08.001

Whole blood CyTOF analysis (cohort 1) clearly indicated very distinct phenotypic alterations of the neutrophil compartment in mild and severe forms of COVID-19. To further delineate the underlying transcriptional programs, we performed scRNA-seq analysis on fresh whole blood samples of 23 individuals (34 samples, cohort 2, Table S1). Integrated visualization of all samples of cohort 2 (fresh/frozen PBMC, fresh whole blood, 229,731 cells, Fig. S6A) revealed the expected blood leukocyte distribution, including granulocytes (Fig. 7A, S6A, Table S4). Cell type distribution identified by scRNA-seq profiles (Fig. S6B) strongly correlated with MCFC characterization of the same samples (Fig. S6C). For further analysis of the granulocyte compartment, we first combined the whole blood samples with the fresh PBMC to guide the clustering of all major immune cells resulting in a total of 122,954 cells (Fig 7A). From these samples, we identified all neutrophil clusters and extracted the cells derived from whole blood for subsampling, which revealed a structure of 9 clusters (n=58,383 cells, Fig. 7B+C).

Single-cell characterization of human cortical spheroids

nature methods

BRIEF COMMUNICATION https://doi.org/10.1038/s41592-018-0255-0

Reliability of human cortical organoid generation

Se-Jin Yoon¹, Lubayna S. Elahi¹, Anca M. Paşca², Rebecca M. Marton[®]¹, Aaron Gordon³, Omer Revah¹, Yuki Miura^{®1}, Elisabeth M. Walczak⁴, Gwendolyn M. Holdgate⁴, H. Christina Fan⁴, John R. Huguenard⁵, Daniel H. Geschwind^{3,6} and Sergiu P. Paşca^{®1,7*}

hSS-MEF is indicated. **c**,**d**, Clustering (**c**) and proportions (**d**) of all single cells across conditions (glutamatergic neuron cluster 1, n = 11,367 cells; intermediate progenitor cluster 2, n = 1,018 cells; radial glia cluster 3, n = 4,217 cells; astroglia cluster 4, n = 2,036 cells; ventral progenitor cluster 5, n = 1,915 cells; GABAergic neuron cluster 6, n = 2,520 cells; OPC cluster 7, n = 194 cells; choroid plexus cluster 8, n = 170 cells; 800 cells not assigned to a cluster). **e**, Representative hCS cryosection at day 150 of differentiation stained for deep (CTIP2) and superficial (SATB2) neuronal markers and the glial

Identification of a distinct arthritis associated macrophage population, AtoM

immunology

ARTICLES https://doi.org/10.1038/s41590-019-0526-7

Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1

Tetsuo Hasegawa^{1,2}, Junichi Kikuta^{®1,3}, Takao Sudo¹, Yoshinobu Matsuura¹, Takahiro Matsui¹, Szandor Simmons¹, Kosuke Ebina⁴, Makoto Hirao⁴, Daisuke Okuzaki^{®5}, Yuichi Yoshida⁶, Atsushi Hirao⁷, Vladimir V. Kalinichenko⁸, Kunihiro Yamaoka², Tsutomu Takeuchi^{®2} and Masaru Ishii^{®1,3*}

Fig. 5 | Single-cell RNA-Seq analysis of synovial R3 cells. a, Schematic outlining the single-cell RNA-Seq analysis. R3 cells were isolated from inflamed knee synovium 1 week after CIA onset. b, I-SNE plot of the single-cell RNA-Seq data of 8,682 R3 cells from mice with CIA. Hierarchical clustering based on gene expression profiles was performed using BD DataView software. c, Differential expression analysis of cluster P1 and the other cell clusters. Fold changes were calculated for differentially expressed genes. The cell numbers of the P1' and 'rest' groups analyzed were 784 and 1,461 (*Mmp9*), 652 and 255 (Itgb3), 885 and 6,011 (Clsk), 885 and 1,098 (Atp6v0d2), 886 and 6,093 (Acp5), 258 and 241 (Foxm1), 239 and 5,685 (Cxcl2), 77 and 3,709 (Ccl2), 183 and 6,883 (Ccr2), 14 and 1395 (Itb), 107 and 2,662 (Cxcl1), 4 and 98 (Ii6), and 180 and 3,791 (Tirf), respectively. d, Single-gene expression plots on the 1-SNE plot of the single-cell RNA-Seq data.

Comprehensive census of human meniscus cells using single-cell RNA-Seq

Figure 1 A single-cell atlas of healthy human meniscus. (A) Seven healthy human meniscus cell clusters. t-Distributed stochastic neighbour embedding (t-SNE) of 3639 cells (mixed with cell fractions, n=3), annotated post-hoc and coloured by clustering. (B) Heatmap revealing the scaled expression of differentially expressed genes for each cluster. (C) Dot plots showing the expression of the indicated markers for each cell cluster on the t-SNE map. (D) Representative immunohistochemistry staining of MYLK, COL1A1, COL3A1, ZIP8, CD93, BMP2 and CDK1 in white and red zones

Reliable, consistent results

- Minimal batch effects
 - Technical replicates
 - Biological replicates
 - Site to site
 - User to user
- Minimum sample bias
- Ability to integrate large data sets without correction for batch effects
- System of choice for translational, multi-center, multiple cohort studies

T cell activation time-course examined across technical replicates

Percentage of cells assigned to each sample tag per cartridge

■ Cartridge 1 ■ Cartridge 2

No batch effect from technical replicates

Strong correlation of mRNA and protein expression in resting and activated T cells between cartridges

40-plex BD[®] AbSeq Reagents

All mRNA and protein markers

Bone-marrow derived cells examined from biological replicates

Similar proportions of each cell type recovered from biological replicates

Site-to-site reproducibility examined by targeted gene expression and protein expression analysis when comparing two sites

Good correlation between mRNA and protein markers between sites

mRNA

Protein (BD AbSeq[™] Antibodies)

27

Little batch effect observed even with no batch correction applied when comparing two sites

High correlation between data generated by three different operators

- BD Rhapsody[™] Human Immune Response Panel
- 1:1 mix of 5,000 Jurkat and Ramos cells were loaded onto each cartridge

Gene-wise correlation (R ²)	User 1 vs. User 2	User 1 vs. User 3	User 2 vs. User 3
with scanner condition	99.5%	99.6%	99.5%
scanner free condition	99.6%	99.0%	99.6%

Consistent results with minimum sample bias across different cell inputs

Similar proportions of each cell type recovered from different cell inputs

Consistent performance with pre-formed microwell partitions

Flow Profile and Leak Testing

Technical replicates

User-to-user

Biological replicates

Site-to-site

Stable bead-oligo complex Peace of mind and efficiency

Similar Data from Subsampled Beads

Similar Data from Archived Beads

00

Iterate on Experiment Design

Tool to Standardize Performance

Expected number of cells seen after bead subsampling

High correlation and no batch effect observed with bead subsampling

Equivalent data obtained from stored beads

- Fresh
- 6 weeks (4C)
- 12 weeks (4C)

- No batch effect between beads stored for 12 weeks
- Good correlation of gene expression between data from fresh beads to beads stored for 12 weeks

Focus on strengths, leverage partners

- Generate beads with stable cDNA that can be stored for up to 3 months
- Perform single-cell capture to RT and Exo treatment steps and store beads. Collect all clinical or research samples to process further, so all libraries can be processed on same day to reduce batch effects that may arise from library prep on different days
- Pool libraries to run on one flow cell for optimized cost efficiency in sequencing
- Store and send beads to CROs, collaborators and genomics core facilities

Iterate on experiment design

- Perform multiple assays over time on the beads prepared from the same set of single cells
- Targeted mRNA, AbSeq, and whole transcriptome libraries can be generated from the same stock of oligo-bead complex
- Allows for recovery from experimental failures
- Gain confidence in your data by running technical replicates

Similar proportions of each cell type are recovered from WTA and Targeted assays performed on subsampled beads

Tool to standardize performance

- Stored, subsampled beads as a tool to:
 - Test technical skills of users
 - New user vs Experienced user
 - Users across different laboratories
 - CROs and collaborators
 - Develop SOPs
 - To control for day-to-day variability in downstream library prep

Scanner for workflow QC Not flying blind, confidence with every experiment

Visual Workflow QC with Analysis Metrics at Every Step

Estimate Cells Expected from Sequencing

Troubleshooting and Optimization of Single-Cell Capture without Sequencing

Visual workflow QC

Pairing cells with beads in microwells: Load cells

Bead loading

Pairing cells with beads in microwells: Load beads

Lyse cells to release mRNA, which hybridizes to label molecules on bead

Bead retrieval

Retrieve beads and pool to a single tube

Analysis metrics

Dispense1-1 Cartridge 0109034055A

Scan Date	Sample	Step	Analysis Status
2018-02-21 10:29:27.56	Dispense1-1	Cell Load	Completed
2018-02-21 10:57:04.44	Dispense1-1	Bead Load	✓ Completed
2018-02-21 11:11:49.59	Dispense1-1	Bead Wash	✓ Completed
2018-02-21 11:26:42.94	Dispense1-1	Retrieval	 Completed

Analysis

Number of wells with viable cells at cell load	9118
Cell multiplet rate at cell load	2.4 %
Number of wells with viable cells and a bead	7999
Cell multiplet rate	2.0 %
Bead loading efficiency	PASS
Excess bead rate	🗸 PASS
Cell retention rate	🗸 PASS
Bead retrieval efficiency	PASS

- Compare cell multiplet rates by imaging vs calculated by • Poisson distribution
- Make Go/No-Go decisions •
- Estimate cells retrieved by sequencing •

Scan start date and time	6/5/2019 10:20
Operator	PC
Analysis Software Version	1.3.0.12
Cell load analysis last updated	6/5/2019 11:10
Total number of tiles	26
Cell load number of tiles processed	26
Number of wells with viable cells at cell load	4001
Number of viable cells captured in wells at cell load	4052
Cell multiplet rate at cell load	1.30%
Bead wash analysis last updated	6/5/2019 11:37
Bead wash number of tiles processed	26
Number of wells with viable cells and a bead	3665
Number of viable cells captured in wells with a bead	3710
Cell multiplet rate	1.20%
Bead loading efficiency	94.70%
Bead loading acceptance	PASS
Excess bead rate	0.00%
Excess bead acceptance	PASS
Cell retention rate	96.90%
Cell retention acceptance	PASS
Bead retrieval analysis last updated	6/5/2019 11:47
Bead retrieval number of tiles processed	26
	· · · · · · · · · · · · · · · · · · ·

Analysis metrics at every step

Scanner metric	Use
Number of wells with viable cells at cell load	Provides a preliminary estimate of the number of wells with viable cells captured
Number of viable cells captured in wells at cell load	Provides a preliminary estimate of the total number of viable cells captured in the cartridge
Cell multiplet rate at cell load	Provides a measure of cell clumping
Number of wells with viable cells and a bead	Provides an estimate of the number of wells with viable cells captured with beads
Number of viable cells captured in wells with a bead	Estimates the total number of viable cells captured on a BD [®] Cell Capture Bead at cell lysis
Cell multiplet rate	Provides an estimate of the occurrence of multiple cells captured by the same bead in a well
Bead loading efficiency	Indicates if the cartridge is significantly underloaded with beads
Cell retention rate	Indicates if a significant number of cells initially loaded into wells are lost or died during the workflow prior to cell lysis
Bead retrieval efficiency	Indicates if the number of beads retrieved is significantly lower than expected

Scanner metrics are highly correlated with recovery by sequencing, helping users better plan for sequencing cost

Across 75 runs, ~75% of cells loaded onto cartridge are retrieved by sequencing

See before you pay!

Live cells loaded	# wells with viable cells and a bead	Total number of reads needed (assuming targeted + 10-plex BD® AbSeq Reagents)	Sequencing cost
20,000 cells	20,000 cells	233M	NextSeq [®] System High Output (\$2,600, ~400M reads)
20,000 cells	9,000 cells	105M	NextSeq [®] System Mid Output (\$999, ~130M reads)

Troubleshooting without scanner is tedious

- Troubleshoot cartridge loading
 - Multiplet rate higher than expected - may indicate cell clumping
 - Cell viability and total number of cells captured in cartridge, after cell load vs in cell prep - indicates if a significant number of cells initially loaded into wells are lost or died during the workflow prior to lysis

Region 3: 17 cells

No. of wells Region Cell count 1 26 225 2 14 225 3 17 225 4 22 225 5 26 225 Total 105 1,125

Cells/well = 105/1, 125 = 0.0933

Total no. cells captured in the cartridge = 0.0933 × 221,891

Total no. cells captured in the cartridge = 20, 702

Bead loading

Bead retrieval

Use scanner to optimize experimental workflow to maximize cell recovery without paying for sequencing

Upstream sample prep that may affect cell capture

BD Rhapsody[™] System workflow optimization

Settling time

BD Rhapsody[™] System - A robust single-cell partitioning system with unique features

Microwell-based single-cell partitioning

52

Thank you!

Class 1 Laser Product. For Research Use Only. Not for use in diagnostic or therapeutic procedures. 23-23087-00

BD Life Sciences, San Jose, CA 05131, USA

bdbiosciences.com

BD, the BD Logo, FACSLyric, Rhapsody and SeqGeq are trademarks of Becton, Dickinson and Company or its affiliates. All other trademarks are the property of their respective owners. © 2020 BD. All rights reserved.

