
Multiomic profiling of antigen  
specific T-cells using BD Rhapsody™  
Single-Cell Analysis System 
Overview 
Deep characterization of antigen-specific T-cells can provide 
essential insight needed to advance the field of immunology. 
Here, we offer a multiomic approach for profiling T-cells 
at the single-cell level using two powerful technologies: 
Immudex® dCODE Dextramer® (RiO) Reagents and the 
BD Rhapsody™ Single-Cell Analysis System. This approach 

allows users to detect and characterize low-frequency 
antigen-specific T-cells while simultaneously obtaining the 
full sequences of the V(D)J gene segments of T-cell receptors, 
along with transcriptome and cell surface protein expression 
information within a single streamlined workflow (Figure 1).
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Dextramer® (RiO) libraries allowing increased 
sensitivity 

• Reliable dCODE Dextramer® (RiO) 
performance: highly concordant single-cell 
and flow cytometry performance 

Figure 1. Workflow overview. 

Multiple samples can be combined after staining with the BD® Single-Cell Multiplexing Kit (SMK) to increase throughput and assay efficiency. Following 
SMK staining, the combined samples can be stained with a panel of dCODE Dextramer® (RiO) Reagents followed by BD® AbSeq Antibody-Oligonucleotide 
Conjugates. Using the PE fluorophore on dCODE Dextramer® (RiO), dCODE Dextramer® (RiO)+ cells can be enriched using FACS followed by loading into the 
BD Rhapsody™ Single-Cell Analysis System. The sample can then be processed using the BD Rhapsody™ Full Length TCR Assay, generating sequencing-ready 
libraries, which will provide full-length TCR sequences alongside the gene and protein expression information of individual cells.  
This may not be compatible with BD® Flex SMK Single-Cell Multiplexing Kits. 

Figure 2: A split library approach can result in 
lowering sequencing costs. 

Sequencing saturation curves for an 8-plex dCODE 
Dextramer® panel (orange) and a 15-plex AbSeq panel 
(blue) are shown from an example experiment. At 
2,000 reads per cell, only a minority of AbSeq molecules 
(sequencing saturation >50%) have been sequenced 
since the AbSeq molecules for this experiment are in 
such high abundance. However, at that same read 
depth, the majority of dCODE Dextramer® molecules 
(sequencing saturation ~90%) were detected since 
there were fewer molecules of dCODE Dextramer®. 
This underscores the importance of being able to 
separately control read depths for AbSeq as compared 
to dCODE Dextramer®, which, as shown in this example, 
may require less read depth than AbSeq for complete 
molecule detection. Gray lines show reads per cell 
needed to get ~90% sequencing saturation for dCODE 
Dextramer® (2,000 reads per cell) versus AbSeq libraries, 
which need 13,000 reads per cell. 

Controlled sequencing depth for dCODE Dextramer® libraries allows increased sensitivity

This assay allows users to control sequencing depths for the dCODE Dextramer® library separately from all other libraries, including 
AbSeq. Using certain AbSeq panels and cell types, AbSeq molecules can be higher in abundance compared to the dCODE 
Dextramer® molecules that were captured on TCR, which would make it harder to detect dCODE Dextramer® when the AbSeq and 
dCODE Dextramer® library are combined. To detect dCODE Dextramer®, the library needs to be sequenced with higher reads per 
cell to obtain higher sequencing saturation (Figure 2). It is imperative, therefore, that these libraries are generated separately to 
avoid deep sequencing that would otherwise be required to achieve dCODE Dextramer® molecule detection if these libraries were 
to be combined. This key feature can save money by avoiding extraneous sequencing expenses.
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Reliable dCODE Dextramer® performance: highly concordant single-cell and flow cytometry 
performance 

The BD Rhapsody™ System effectively identifies dCODE Dextramer®-positive populations with similar cell counts as compared 
to positive dCODE Dextramer® cells identified by flow cytometry (Figure 3). Cell aliquots were individually stained with eight 
dCODE Dextramer® reagents by flow cytometry using a BD FACSCanto™ Analyzer. These cell counts were then compared to 
dCODE Dextramer®-positive cell populations identified using the BD Rhapsody™ System, which used the same cell type and 
dCODE Dextramer® panel. The results show that the frequencies of positive cells found from single-cell sequencing using the 
BD Rhapsody™ System are highly concordant with those found by flow cytometry.

Experimental data 
Demonstrating the compatibility of Immudex® dCODE Dextramer® (RiO) Reagents with the 
BD Rhapsody™ TCR Full Length Assay

To demonstrate the integration of Immudex® dCODE Dextramer® dCODE reagent profiling into the TCR full-length, targeted 
mRNA, BD® AbSeq Assay and sample tag workflow, we conducted a study using resting hPBMCs from the same donor that 
were independently stained with an identical panel of dCODE Dextramer® reagents followed by co-staining of the same BD® 
AbSeq Reagents and different sample tags. Independently staining each cell sample allowed us to evaluate the reproducibility 
and reliability of multiplexing, dCODE Dextramer® reagent and AbSeq marker performance. The cell samples were sorted for 
dCODE Dextramer®+ and live CD8+ cells using a BD FACSAria™ Cell Sorter by additional staining with anti-CD8 APC-H7 antibody 
and 7-AAD dye for live/dead cell detection. After sorting, the cells were combined and loaded into a single BD Rhapsody™ 
Cartridge whereby single cells were partitioned into microwells. Beads were then loaded prior to cell lysis enabling the capture 
of polyadenylated transcripts and oligonucleotide tags from the cells. Following capture, cDNA and library preparations were 
completed for next generation sequencing (NGS) and data analysis (Figure 4). 
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Figure 3: High correlation between dCODE Dextramer®-positive 
cell detection using two different approaches: Flow cytometry 
versus the BD Rhapsody™ Single-Cell Analysis System.

dCODE Dextramer®-positive cells were identified by either flow 
cytometry or by the BD Rhapsody™ Single-Cell Analysis System 
from a cell sample stained with eight antigen-specific dCODE 
Dextramer® (RiO) reagents, listed here as dCODE RiO 1 to 
dCODE RiO 8.



Figure 4. Experimental workflow. 

(A) A schematic of the experimental workflow showing two samples independently stained with SMK, AbSeq and dCODE Dextramer® reagents, which were 
then combined and sorted using flow cytometry to enrich for CD8+ dCODE Dextramer®-positive cells. The multiplexed samples were then loaded onto a 
single cartridge and processed through the BD Rhapsody™ System followed by library preparation and NGS. (B) Listed are the dCODE Dextramer® and BD® 
AbSeq Panels used to stain cells in this experiment. Both samples were stained with the same dCODE Dextramer® and BD® AbSeq Panels. 
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Results

Since Samples 1 and 2 were replicates of each other, data from these samples were combined for further analysis. Together these 
samples yielded approximately 4,000 CD8+ dCODE Dextramer®+ sorted cells and showed distinct clustering that corresponded 
to one of eight antigen-positive dCODE reagents as shown in the tSNE plots below (Figure 5). Importantly, cells were also stained 
with five negative dCODE Dextramer® reagents (non-antigen reagents) used to evaluate the background level of the dCODE 
Dextramer® signal. The sum of all five negative dCODE Dextramer® reagents yielded little to no background of nonspecific binding 
as shown in the tSNE plot below, suggesting high specificity of antigen-positive dCODE Dextramer® binding. 

dCODE® RiO Panels 

dCODE ID number Specificity MHC allele/peptide

RiO_5036 EBV 1 B3501_EPLPQGQLTAY

RiO_5037 EBV 2 B3501_HPVGEADYFEY

RiO_5030 EBV 3 A0201_GLCTLVAML

RiO_5031 EBV 4 A0201_FLYALALLL

RiO_5038 CMV 1 B3501_IPSINVHHY

RiO_5032 CMV 2 A0201_NLVPMVATV

RiO_5035 CMV 3 A0201_VLEETSVML

RiO_5029 FLU A0201_GILGFVFTL

RiO_5024 Neg.Ctrl 1  A0101_SLEGGGLGY

RiO_5025 Neg.Ctrl 2  A0201_ALIAPVHAV

RiO_5026 Neg.Ctrl 3  A2402_AYSSAGASI

RiO_5027 Neg.Ctrl 4  B0702_GPAESAAGL

RiO_5028 Neg.Ctrl 5 General NC_NC

BD® AbSeq Panel

AbSeq specificity Clone Product number

CD11b M1/70 940008

CD45RA HI100 940011

CD69 FN50 940019

CD279 EH12.1 940015

TCRgd B1 940057

TIM-3 7D3 940066

LAG-3 T47-530 940080

CD56 NCAM16.2 940007

CD19 SJ25C1 940004

CD4 SK3 940001

CD3 SK7 940000

HLA-DR G46-6 940010

CD45RO UCHL1 940022

CD62L DREG-56 940041

TCRab IP26 940074
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Detection of dCODE Dextramer®-positive cells 

Phenotyping using AbSeq cell-surface protein marker expression

Figure 5. Detection of dCODE Dextramer®-positive cells. 

Shown are tSNE plots highlighting the molecules per cell detected for each of the eight antigen-specific dCODE Dextramer® reagents used in this 
experiment. Molecules per cell detected for the five negative dCODE Dextramer® (non-antigen) reagents were combined and displayed in a single tSNE plot 
and show little to no background noise. 

To demonstrate as an example of how the data could be analyzed more deeply, we choose to focus on one cluster corresponding 
to cells showing high CMV 3 dCODE signal (a similar approach could be used to further analyze other clusters or dCODE 
Dextramer®+ cells). Using AbSeq markers to profile cell surface protein expression, distinct sub-populations were identified 
(Figure 6A). Two discrete sub-populations of cells were distinguished as either CD45RO+/CD45RA- or CD45RO-/CD45RA+. Using 
the targeted mRNA gene expression data (containing approximately 400 gene targets), a differential gene expression plot was 
generated revealing certain genes in these sub-populations that were significantly upregulated (Figure 6B).
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Sub-populations found in a cluster with high CMV 3 dCODE Dextramer® detectionB.

A.

Figure 6. Profiling sub-populations within a cluster using cell surface protein and mRNA gene expression. 

(A) tSNE plots showing AbSeq expression from 10 relevant markers. Circled is the cluster of cells that shows a high detection of CMV 3 dCODE Dextramer®. 
(B) Differential gene expression plots of two sub-populations; CD45RO-/CD45RA+ (naïve) and CD45RO+/CD45RA- (effector) showing several genes that are 
significantly upregulated. 

Group name Gene Fold  
change p-value

CD45RO-/RA+ ZNF683 7.65 4.36E-16

CD45RO-/RA+ GZMB 4.07 8.40E-27

CD45RO-/RA+ GNLY 3.3 2.10E-66

CD45RO-/RA+ KLRB1 2.93 5.22E-20

CD45RO-/RA+ GZMH 1.96 7.59E-19

CD45RO-/RA+ NKG7 1.47 3.76E-28

CD45RO+/RA- GZMK 5.88 2.58E-33

CD45RO+/RA- DUSP2 3.17 3.48E-33

CD45RO+/RA- CD74 2.33 5.95E-14

CD45RO+/RA- DUSP1 1.97 8.91E-14

Next, we examined the CDR3 clonotypes identified in the cluster of cells that had a high detection of CMV 3 dCODE Dextramer® 
and overlayed these clonotypes on a newly generated tSNE plot (note that the tSNE plot in Figure 7A is slightly different than 
that in Figure 6, but the cells are the same). The percentage of cells with these clonotypes are shown alongside the tSNE plot 
below (Figure 7A). The amino acid translated sequence for the most frequent alpha/beta paired CDR3 clonotype found was 
“ASLNYGGATNKLI/ASSHPATQGARREQY.” Since these cells were identified in a cluster that had high detection of CMV 3 dCODE 
Dextramer®, it is likely that this clonotype may have high affinity to the antigen epitope (VLEETSVML) associated with this 
CMV 3 dCODE Dextramer®. However, to further support this, we identified the paired CDR3 clonotypes using all the cells in the 
experiment and assessed the number of molecules associated with each dCODE Dextramer®. The results showed that there 
was an overwhelming number of molecules for CMV 3 dCODE Dextramer® from all CD8+ cells harboring the “ASLNYGGATNKLI/
ASSHPATQGARREQY” clonotype (Figure 7B). Finally, using the cells having the “ASLNYGGATNKLI/ASSHPATQGARREQY” CDR3 
clonotype, we identified the full-length alpha/beta paired TCR sequences. There were a variety of full-length sequences; however 
one sequence was most prevalent (Figure 7C).
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Sum of dCODE Dextramer® RiO molecules from cells that have clonotype: ASLNYGGATNKLI_ASSHPATQGARREQY 

Frequency  
alpha/beta 
paired  
sequence

TCR 
chain FR1_Translation_Dominant

CDR1_
Translation_ 
Dominant

FR2_Translation_ 
Dominant

CDR2_
Translation_ 
Dominant

FR3_Translation_Dominant CDR3_Translation_ 
Dominant

FR4_
Translation_ 
Dominant

71%
alpha ILNVEQSPQSLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha GSLRRRYGESLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha ILNVEQSPQSLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRIRATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha ILNVEQSPQSLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSSLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha ILNVEQSPQSLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta DAVVAQSPRYMITEKSPAVAFWCDPF SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha ILNVEQSPQSLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVTFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha LINKRRRYGGLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha LLMLSTCGESLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLY ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYRYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha PDMRIMYGESLHVQEGDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

3%
alpha QIAVTLLVLRDSTNFTCSFP SSNFYA LHWYRWETAKSPEALFV MTLNGDE KKKGRISATLNTKEGYSYLYIKGSQPEDSATYLC ASLNYGGATNKLI FGTGTLLAVQP

beta EAEVAQSPRYKITEKSQAVAFWCDPI SGHAT LYWYRQILGQGPELLVQ FQDESV VDDSQLPKDRFSAERLKGVDSTLKIQPAELGDSAMYLC ASSHPATQGARREQY FGPGTRLTVT

Figure 7. TCR alpha/beta clonotype analysis. 

(A) A tSNE plot of cells with high detection of CMV 3 dCODE Dextramer® with an overlay of the CDR3 clonotypes found in this population. Alongside the 
tSNE is a plot showing the frequencies of these clonotypes. (B) Using all the CD8+ cells in the experiment that harbored the clonotype “ASLNYGGATNKLI/
ASSHPATQGARREQY,” the sum of dCODE Dextramer® molecules was reported for each dCODE Dextramer®. (C) Full-length TCR alpha/beta chain sequences 
are shown for a subset of cells that share the same CDR3 clonotype (ASLNYGGATNKLI/ASSHPATQGARREQY). 
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Demonstrating the reproducibility and reliability of sample multiplexing in the Immudex® dCODE 
Dextramer® dCODE (RiO) plus BD Rhapsody™ TCR Full Length Assay workflow

We next evaluated the compatibility of using the BD® Single-Cell Multiplexing Kit (SMK) with the dCODE Dextramer® technology in 
the TCR full length + targeted mRNA, BD® AbSeq Assay and sample tag workflow by examining dCODE Dextramer® reagent and 
AbSeq marker performance. As previously mentioned, the two samples in this study were independently stained with an identical 
panel of dCODE Dextramer® reagents followed by co-staining of the same BD® AbSeq Reagents. A tSNE plot was generated as 
seen below in Figure 8A, which shows an overlay of the two samples with no batch effect (samples were stained with Sample tag 
5 and Sample tag 6). An evaluation of AbSeq marker expression and dCODE Dextramer® detection was conducted showing very 
similar profiles for AbSeq expression and a high correlation of dCODE Dextramer® molecules for each sample (Figure 8B and 8C). 

A. tSNE plot showing no batch effects  
for multiplexed samples

B. Median number of molecules  
per cell, log 10

C. Correlation: mean( log10 
(molecules per cell per gene) )
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Figure 8. Evaluation of sample multiplexing.

(A) tSNE plot of two multiplexed samples showing no batch effect. (B) 15-plex AbSeq marker expression for two samples that were independently stained 
with the same AbSeq panel (ST5 = Sample tag 5, ST6 = Sample tag 6). (C) Correlation plot of eight antigen-positive dCODE Dextramer® for both samples 
(Sample tag 5 and Sample tag 6) that were independently stained with the same dCODE Dextramer® panel. 

Conclusions
• dCODE Dextramer® (RiO) Reagents can be seamlessly integrated into a targeted mRNA and TCR full-length workflow to 

profile hPBMCs, while being compatible with BD® AbSeq Assays and the BD® Single-Cell Multiplexing Kit.

• Antigen-specific T-cells along with their corresponding full-length TCR sequences were identified by viral-specific  
HLA-peptide complexes displayed on dCODE Dextramer® (RiO) Reagents used in combination with TCR full-length assays.

• Sample multiplexing of three different samples showed reproducibility of BD® AbSeq Assays and dCODE Dextramer® 
performance as well as a sensitive detection of dCODE Dextramer® reagents from different cell types 
(CD4+ and CD8+ cells).
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